Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium

نویسندگان

  • Tinggang Li
  • Yu Yan
  • Jianzhong He
چکیده

BACKGROUND The main challenge of cassava-based biobutanol production is to enhance the simultaneous saccharification and fermentation with high hyperamylolytic activity and butanol yield. Manipulation of cofactor [e.g., Ca(2+) and NAD/(P)H] levels as a potential tool to modulate carbon flux plays a key role in the cassava hydrolysis capacity and butanol productivity. Here, we aimed to develop a technology for enhancing butanol production with simultaneous hydrolysis of cassava (a typical model as a non-cereal starchy material) using a cofactor-dependent modulation method to maximize the production efficacy of biobutanol by Clostridium sp. stain BOH3. RESULTS Supplementing CaCO3 to the medium containing cassava significantly promotes activities of α-amylase responsible for cassava hydrolysis and butanol production due to the role of Ca(2+) cofactor-dependent pathway in conversion of cassava starch to reducing sugar and its buffering capacity. Also, after applying redox modulation with l-tryptophan (a precursor as de novo synthesis of NADH and NADPH), the levels of cofactor NADH and NADPH increased significantly by 67 % in the native cofactor-dependent system of the wild-type Clostridium sp. stain BOH3. Increasing availability of NADH and NADPH improved activities of NADH- and NADPH-dependent butanol dehydrogenases, and thus could selectively open the valve of carbon flux toward the more reduced product, butanol, against the more oxidized acid or acetone products. By combining CaCO3 and l-tryptophan, 17.8 g/L butanol with a yield of 30 % and a productivity of 0.25 g/L h was obtained with a hydrolytic capacity of 88 % towards cassava in a defined medium. The metabolic patterns were shifted towards more reduced metabolites as reflected by higher butanol-acetone ratio (76 %) and butanol-bioacid ratio (500 %). CONCLUSIONS The strategy of altering enzyme cofactor supply may provide an alternative tool to enhance the stimulation of saccharification and fermentation in a cofactor-dependent production system. While genetic engineering focuses on strain improvement to enhance butanol production, cofactor technology can fully exploit the productivity of a strain and maximize the production efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by Clostridium acetobutylicum using cassava substrate

Background: In acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 using corn-based substrate, the solvents are generally produced at a ratio of 3:6:1 (A:B:E, w/w). Results: A higher butanol/acetone ratio of 2.9:1 was found when cassava was used as the substrate of an in-situ extractive fermentation by C. acetobutylicum. This ratio had a 64% increment compared to t...

متن کامل

Genome Sequence of Clostridium acetobutylicum GXAS18-1, a Novel Biobutanol Production Strain

Clostridium acetobutylicum is an organism involved in the production of acetone and butanol by traditional acetone-butanol-ethanol fermentation (ABE). We report the draft genome sequence of C. acetobutylicum strain GXAS18-1, which can produce ABE directly from cassava flour.

متن کامل

Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing

BACKGROUND High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion ...

متن کامل

STIMULATORY EFFECTS OF CALCIUM CARBONATE ON BUTANOL PRODUCTION BY SOLVENTOGENIC Clostridium species

Solventogenic Clostridium species are motile Gram positive anaerobic bacteria used for the fermentative production of acetone-butanol-ethanol (ABE). The addition of CaCO3 to semi-defined P2 medium was investigated to evaluate its impact on growth, amelioration of butanol toxicity, glucose utilization, and ABE production by solventogenic Clostridium species. Two Clostridium species commonly used...

متن کامل

Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation.

Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, 40℃, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015